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TECHNICAL MEMORANDUM

TEST PLATFORM FOR ADVANCED DIGITAL CONTROL OF BRUSHLESS DC MOTORS
(MSFC Center Director’s Discretionary Fund Final Report, Project No. 00–04)

1.  INTRODUCTION

The goal of this effort is to develop a test platform for development, implementation, and evalua-
tion of adaptive and other advanced control techniques for brushless DC (BLDC) motors used in transla-
tion and positioning systems. The test platform will be used to test and select control techniques for
BLDC motor-driven systems for various applications. The control approach to be evaluated will be
implemented as a digital control algorithm in an embedded digital control processor. Important applica-
tions for a BLDC motor-driven system are the translation of specimens in microgravity experiments and
electromechanical actuation of nozzle and fuel valves in propulsion systems. Motor-driven aerocontrol
surfaces are also being utilized in developmental X vehicles. The performance of advanced control
approaches will be compared with the performance of linear controllers with fixed control gains. This
effort includes the design and fabrication of a printed circuit board (PCB) using a digital signal proces-
sor (DSP) device suitable for the implementation of an advanced controller. This PCB has a small form
factor and will serve as the main processing unit for digital control algorithms. The controller PCB will
interface to appropriate electronics for driving the BLDC motor and signal conditioning electronics for
measured signals used as feedback. This will allow peripheral electronics to be chosen to suit a wide
variety of applications. This effort will provide hardware and reusable algorithms for application to
future space vehicles and spaceborne experiments. This effort provides the implementation of control
approaches for BLDC motor-driven actuators with improved performance in the face of unanticipated
changes in the dynamics of the mechanical systems due to normal wear and tear, and for operation
outside expected load conditions.
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2.  BACKGROUND

Embedded control of BLDC motor-driven systems is currently being used in the design of
propulsion systems and microgravity experiments at Marshall Space Flight Center. Some of the electro-
mechanical actuators (EMAs) developed for use in nozzle and fuel valve positioning are BLDC motor-
based designs. Many microgravity experiments employ BLDC motor-driven linear stages for specimen
or camera translation. In general, these embedded control designs employ linear proportional-integral-
derivative (PID) control. This is an attractive approach because it does not require a theoretical model
of the system and is a proven method of control. To give some perspective, the Ziegler-Nichols tuning
method for PID controllers was developed in the 1940s. When project deadlines are on the horizon, the
tried-and-proven approach is often the one taken. In practice, the selection of gains for a PID controller
is largely ad hoc and subject to the trial-and-error method of refinement. This means that while the PID
control works, it is not necessarily the best control approach available. It is true that PID control can be
enhanced using gain scheduling over a range of known operating conditions, but this requires knowledge
that may be inaccurate or subject to change over time. There are many advanced control approaches that
can be used to provide higher accuracy and more robust response to unexpected changes or nonlinear
characteristics in the mechanical system being controlled. Additionally, the latest generation of low-
power DSP devices and supporting electronics can further reduce the power needed to operate the
control system.
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3.  APPROACH

This effort is based on analyzing existing controller designs developed for microgravity experi-
ments. A new DSP processor PCB design is produced using recently released, faster and lower power
DSP devices. The new design is focused on providing a flexible embedded controller PCB, while the
existing designs are application specific. A general test platform is implemented that consists of a com-
puter to compile and download the control algorithm code to the DSP on the controller card. The com-
puter is used to debug the code and to provide performance data storage and analysis. The controller
card acquires feedback signals from position and velocity sensors through appropriate signal condition-
ing circuitry and provides command signals to the motor driver for a BLDC motor-driven system.
A diagram of the system is shown in figure 1. The experimental mechanical system is a translation stage
that will move a variable load vertically with respect to gravity. In this effort, the implementation and
testing of adaptive control algorithms is done using the prototype DSP controller board. Experiments
are conducted to verify improvements in system performance obtained using the adaptive control algo-
rithms. These experiments are executed using linear algorithms and the adaptive control algorithms
on the same hardware. The response of the linear and advanced control algorithms will be recorded
with varying loads on the translation stage. Performance is evaluated by collecting data and comparing
system response under different control approaches.

Computer
Interface

DSP Controller
Drive

Electronics DAC

Signal
Conditioning 

Linear Encoder

BLDC
Motor 

Translation
Stage

Load

Motor Current
Supply

Motor Feedback

Current
Command

Figure 1.  Brushless DC motor control experimental configuration.
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The DSP controller is pictured in figure 2. The PCB form factor is a single-height Versa Module
Eurocard (VME) board with dimensions of 3.937 in by 6.299 in. A 96-pin VME backplane connector is
used, but the pin definitions are customized and do not follow the VME specification. This connector is
used to route signals between the controller card and the signal conditioning cards required to control the
motor-driven translation stage.

Figure 2.  DSP controller card.
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4.  CONTROLLERS

4.1  Proportional-Integral-Derivative Controller

The linear PID control algorithm code is written in C and implemented as firmware on the DSP
controller card. A linear PID controller in continuous time has the following form:

u t K e t
K

e t dt K
de t

dtP
I

D( ) ( )
( )

( )
( )

,= + +Ú1 (1)

where

u = output of the controller and the input to the controlled system
e = error and is defined as e = desired trajectory – stage carriage position
KP = proportional gain
KI = integral gain
KD = derivative gain.

For implementation in a discrete time control system, the continuous time equations
are converted to a difference equation form:

u k K e k
T

K
S k K

e k e k

TP
I

D( ) ( ) ( )
( ) ( )

= + +
- - 1

S k S k e k( ) ( ) ( ) ,= - +1 (2)

where

T = sampling period
k = index for the kth sample time

S = sum of the error values at the kth sample time.

The error and controller gain definitions are the same as for equation (1).

4.2  Adaptive Exact Model Knowledge Controller

In this investigation, a commercial motor drive is used that accepts a torque (current) command
input and produces the commanded torque at the output of the motor shaft. This inner torque control
loop allows the controller implemented in firmware on the DSP controller card to command motor
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torque. To the controller, the system dynamics of the motor-driven stage are represented by the following
equation:

T t J t B t TE L( ) ˙ ( ) ( ) ,= + +w w (3)

where

TE = torque input to the system produced by the motor
J = inertia in the system
B = damping in the system
TL = load torque
w = rotational speed of the motor shaft.

This equation is used in an exact model knowledge (EMK) controller1 to produce command
input based on knowledge of system dynamics. The controller combines a linear proportional-derivative
(PD) controller with terms based on the system dynamics equation. The continuous time controller is
defined by the following equation

u t K K e t e t J q t e t Bq t TS D L( ) ˙( ) ( ) ˙̇ ( ) ( ) ˙( ) ,= +( )[ ] + +( ) + +t a a2
(4)

where

Kt 2 = current to torque conversion factor
KS = positive control gain
a = positive control gain
e = error and is defined as qqe D -=
qD = desired position trajectory (mm)
q = position of the stage carriage (mm).

In the EMK controller, KS and a can be related to KP and KD in a linear PD controller. For
implementation in a discrete time control system, the second derivative of the desired trajectory, the first
derivative of the stage carriage position, and the derivative of the error are calculated using approxima-
tions. For adaptive control, the inertia, damping, and load torque of the system are estimated online.
The interested reader is referred to Dawson et al.1 for the derivation of the adaptation approach.

4.3  Self-Tuning Controller

Another approach to adaptive control is the implementation of a self-tuning controller (STC).2

Astrom and Wittenmark refer to these controllers as self-tuning regulators, but regulation implies rejec-
tion of disturbances to maintain a process at a constant setpoint, while control implies the broader action
of following a desired trajectory and rejecting disturbances. The term “controller” is therefore used in
this Technical Memorandum rather than “regulator.” The STC implementation uses pole placement
control design in conjunction with parameter estimation to provide a controller that can calculate its own
control gains online. A general discrete-time linear controller can be described by
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R z u z T z u z S z y zc( ) ( ) ( ) ( ) ( ) ( ) ,= - (5)

where R, T, and S are z-transformed polynomials. In equation (5), u(z) is the control input, uc(z)
is the desired trajectory, and y(z) is the system output. For implementation, equation (5) will be con-
verted to a difference equation similar in form to equation (2). Pole placement design uses the system
parameters to calculate the coefficients of the polynomials to achieve a desired closed-loop system
response. In this study, the controller polynomials are chosen to provide a pole placement controller
with integral action. Pole placement is considered a modern approach to controller design. It is a linear
controller and requires accurate knowledge of open-loop system dynamics to achieve precise placement
of the closed-loop system poles. It has a distinct advantage in that tuning the controller is not a trial-
and-error process but a well-defined, mathematical approach using a desired closed-loop system
response chosen by the designer. In the practical case, where the open-loop system dynamics are reason-
ably known, a controller design that closely meets the desired closed-loop response can be achieved
easily and very quickly.

The continuous-time transfer function of the motor-driven vertical stage is

G s
q s

T s T s s sE L
( )

( )
( ) ( ) ( . )

.
–

=
-

=
+ ¥

1216.448

5 324098 10 5 (6)

The z-transform of G(s) for a sampling period of 0.005 s (200-Hz rate) is

G z
z

z z

b z

z a z a
( )

. ( ) ( )
.=

+
- +

=
+

- +
0 0152056 1

2 1

1
2

0
2

1 2

(7)

For this system, the parameters in the numerator are equivalent and are represented by one
parameter, b0, rather than two. The desired transfer function for the closed-loop system is chosen to be

Bm z

Am z

z

z z

( )

( )

. ( )

. .
,=

+
- +

b0 0152056 1

1 84291 0 8521442
(8)

where b is chosen to give the unit steady state gain. The characteristic equation (denominator) of the
desired closed-loop system provides a second-order response with a natural frequency of 10 rad/s and a
relative damping of 0.8. The interested reader is referred to Astrom and Wittenmark2 for derivation of
the controller polynomials. The controller polynomials are functions of the system parameters b0, a1,
and a2 in equation (7). The STC must estimate these parameters in order to calculate the control gains
while also controlling the system.
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5.  EXPERIMENTS

5.1  Comparison of Proportional-Integral-Derivative and Adaptive
Exact Model Knowledge Controller

For the first set of experiments comparing the PID and the adaptive EMK controller, the sample
period is chosen to be 0.0005 s, which gives a sample rate of 2,000 Hz. The PID controller gains are
obtained by trial-and-error technique, as the Zeigler-Nichols tuning method and other “canned” tuning
methods3 produce gains that are too conservative to take advantage of the performance capabilities
of the motor-driven linear stage in the test platform. The gains selected are KP = 15.7, KI = 0.002,
and KD = 0.08.

The performance of the PID controller is illustrated in figures 3 and 4. In each case, the control-
ler is presented with the desired trajectory that is described by the following equation, which provides
a trajectory in units of millimeters:

r t t e t( ) . sin( ) ..= -( )-25 0 2 1 0 3 3p (9)
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Figure 3.  PID controller response with 27-lb load for (a) position, (b) error, and (c) input.
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Figure 4.  PID controller response with 50-lb load for (a) position, (b) error, and (c) input.

In the firmware, an approximation to p is used, so the frequency of the sine wave is not exactly
1 Hz (2p rad/s). Figure 3 shows the performance of the system with a load of 27 lb placed on the car-
riage of the vertical stage. The error between position of the carriage and the desired trajectory is small
relative to the magnitude of the desired trajectory; figure 3(a) shows only the carriage position. If the
desired trajectory were plotted with the position on this graph, the position would appear to have no
tracking error relative to the desired trajectory. Figure 3(b) shows the tracking error and 3(c) shows the
control input to the vertical stage drive. In this system, the control input is a voltage command with a
range of ±10 V. This voltage command represents a torque command for the motor. Figure 4 shows the
performance of the system with a 50-lb load placed on the carriage. Note that there is a visible increase
in the tracking error. Table 1 presents the mean, standard deviation, and maximum absolute magnitude
of the tracking error at steady state. The maximum magnitude of the tracking error increases by
28.8 percent with the increase in load.

Mean (mm)

Standard deviation (mm)

Maximum magnitude (mm)

–5.186×10–4

0.0102

0.0361

5.2131×10–4

0.0113

0.0465

27-lb Load 50-lb Load

Table 1.  PID control tracking error metrics.
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The PID controller provides good response without utilizing any knowledge of the system
dynamics. However, an adaptive controller can estimate the parameters of the system dynamics
and use these to automatically tune a controller.

For comparison of performance with the PID controller, the adaptive EMK controller is given
the same desired trajectory defined by equation (9). The sampling period is 0.0005 s, KS = 0.18,
and a = 100. The tracking error for the adaptive EMK controller is presented in figure 5. Figure 5(a)
presents the tracking error for a 27-lb load and 5(b) presents the tracking error for a 50-lb load. Table 2
presents the mean, standard deviation, and maximum magnitude of the tracking error at steady state.
Note that the adaptive EMK controller keeps the tracking error fairly constant between the two different
loads. There is no significant increase in the maximum magnitude of the error with the increased load,
as there was with the PID controller. Also, the maximum absolute magnitude of the adaptive EMK
controller error for both load cases is lower than that shown in table 1 for the PID controller at the 27-lb
load. The increase in the magnitude of the mean value of the error for the 50-lb load in table 2 is not
considered detrimental, because the positive and negative error magnitudes are not symmetric for this
case, as shown in figure 5(b). Actually, this is an artifact of the improved control performance because
the maximum positive magnitude of the error is on the order of 0.02. This is roughly 30 percent less than
the absolute maximum magnitude listed in table 2. This shows the limitations of using statistical mea-
sures based on the assumption of Gaussian distribution. While the increase in magnitude of the mean
error value taken by itself seems to indicate poorer control performance, inspection of the plot in figure
5(b) reveals this to be due to the obviously non-Gaussian distribution of the error values.
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Figure 5.  Adaptive EMK controller error response with (a) 27-lb load and (b) 50-lb load.
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Mean (mm)

Standard deviation (mm)

Maximum magnitude (mm)

–8.9135×10–4

0.0125

0.0325

–13×10–4

 0.01

 0.0331

27-lb Load 50-lb Load

Table 2.  Adaptive EMK control tracking error metrics.

The estimates of the system inertia, damping, and load torque are shown in figures 6 and 7 for
the two different cases of the 27- and 50-lb load on the carriage. Calculated values for the inertia, damp-
ing, and load torque based on manufacturer’s data and the 27-lb load are inertia, J = 0.0269039 oz-in-s2;
damping, B = 1.4324¥10–6 oz-in-s, load torque, TL = –17.06848 oz-in.
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Figure 6.  Parameters estimated by the adaptive EMK controller for 27-lb load for (a) inertia,
(b) damping, and (c) load torque.
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Figure 7.  Parameters estimated by the adaptive EMK controller for 50-lb load for (a) inertia,
(b) damping, and (c) load torque.

The negative value of the load torque is due to the direction of motor shaft rotation required to
oppose gravity. In figure 6, the estimated inertia is on the order of 0.03 oz-in-s2, and the estimated torque
load is on the order of –17 oz-in. Both are close to the calculated values. But the damping is on the order
of 0.15 oz-in-s, indicating that there is considerably more damping in the system than can be accurately
calculated using system specifications obtained from the manufacturer. The adaptive EMK controller is
able to determine the true damping from the system response. In figure 7, the load is increased to 50 lb
and the estimated load torque nearly doubles to a value of approximately –32 oz-in, as would be
expected with a 185-percent increase in load on the stage carriage. The estimated inertia and damping in
figure 8 closely match the values estimated for the 27-lb load. While the load on the carriage is a factor
in the total inertia of the system, the rotor inertia of the motor and the inertia of the stage lead screw
dominate the total inertia.

The adaptive EMK controller input to the stage drive is shown for the 50-lb load case in figure 8.
Comparing this to the input produced by the PID controller for the 50-lb case shows no reduction in
control effort by the adaptive EMK controller. The adaptive EMK controller produces commands with
increased maximum absolute magnitude. This can be observed easily by comparing figure 4(c) with
figure 8.
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Figure 8.  Adaptive EMK control input to the translation stage with 50-lb load.

The literature indicates that the adaptive EMK controller can provide an order of magnitude
reduction in tracking error magnitude and significant reduction in control effort when compared with the
performance of a linear PD controller. Dawson et al.1 used a test platform consisting of a one-link robot
arm. In this case, the load torque is nonlinear with respect to angular position. In the case of the motor-
driven vertical stage, changing the weights on the stage carriage can vary the torque load, but it is only
bias, as it remains constant regardless of stage position. This implies that the adaptive EMK controller
should provide much better results in a dynamic system with nonlinearities. Additionally, Dawson et al.
recommend including the motor and drive electrical dynamics in the controller design. The rationale is
that these dynamics effectively filter out higher order frequency content in the controller input signal and
therefore should not be neglected by using an inner, high-gain torque (current) control loop, as is used in
this investigation. Including these dynamics is said to improve position tracking performance. This is a
topic for future study, as Dawson et al. used linear voltage amplifiers to drive the motor in their study.
Most practical motor-driven systems use motor drives consisting of H-bridges of power transistors,
switched on and off by pulse width modulated command signals. This is the type of motor drive used in
this study. Linear amplifier dynamics are considerably easier to model accurately than those of switched
transistor drives.
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5.2  Comparison of Pole Placement and Self-Tuning Controllers

For this experiment, the sampling period is 0.005 s (200-Hz rate), and a1 and a2 are initially set
to 0, while b0 is initially set to 0.001. Figure 9 shows the online estimation of the system parameters,
while figure 10 illustrates the control system response to a desired trajectory consisting of a 0.25-Hz
square wave with 25-mm amplitude. The STC rapidly converges to an approximate solution and pro-
vides good control response. The STC estimates for the system parameters are b0 = 0.0109328, a1 =
–1.9771677, and a2 = 0.976626.
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Figure 9.  Online estimation of system parameters by STC for (a) a1 and a2 and (b) b0.
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Figure 10.  STC performance with 27-lb load for (a) position response
to desired position trajectory, (b) error, and (c) input.

Despite the differences between the calculated values in equation (7) and the estimates,
the resulting pole placement controller performs very well. It is worth noting that using the damping
(0.15 oz-in-s) and inertia (0.03 oz-in-s2) estimated by the adaptive EMK controller gives a discrete
time system with the following parameters: b0 = 0.0135234, b1= 0.01341112, a1 = –1.97531,
and a2 = 0.97531.

These “new” values of a1 and a2 are closer to the estimated values obtained by the STC, once
again indicating that an adaptive controller can estimate the “true” parameters of a system. The denomi-
nator of the motor-driven vertical stage transfer function contains the damping parameter and the inertia
parameter. However, the numerator now has two parameters, and b1 π b0. These “new” numerator
parameters are nearly equivalent and can be represented by one parameter in practice. The estimated
value of b0 implies that there is lower gain in the motor-driven vertical stage than that calculated from
system specifications.

Plots are given in figure 11 comparing the response of the STC to the response of the pole place-
ment controller designed using the exact values of the system parameters in equation (7). Note that after
the STC parameter estimates converge, the two controllers provide very similar steady state response
with the exception of small errors during the transitions between the positive and negative 25-mm
commands. At steady state, both controllers provide position responses that are within ±0.030 mm
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of the desired trajectory. Use of the STC has the clear advantage of being able to tune itself in a matter
of seconds. In comparison with the typical manual trial-and-error approach to tuning a PID controller,
the tuning process for the STC is much faster and automatically adapts to any changes in the parameters
of the system being controlled while providing acceptable control prior to convergence of the estimates.

0 2 4 6 8 10 12 14 16 18 20
–30

–20

–10

0

10

20

30

0 2 4 6 8 10 12 14 16 18 20
–2

–1

0

1

2

Time (s)

Time (s)

Des. Trajectory
Pole Placement
STC

(a)

(b)

Er
ro

r (
m

m
)

Re
sp

on
se

 (m
m

)

Figure 11.  Comparison of STC and standard pole placement control
for (a) position response and (b) error.
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6.  SUMMARY

In this investigation, it is shown that adaptive controllers have significant advantages over linear
controllers with fixed gains. Adaptive control provides improved control system performance in the face
of unanticipated changes in actuator mechanical system dynamics. It can also provide improved actuator
performance due to adaptation to unmodeled dynamic system parameter variation and inaccurate param-
eter characterization. The ability to self tune while controlling the system is an advantage that can be
utilized to improve the capabilities of spacecraft of various types. This can provide rapid control loop
tuning at the commissioning and recertification of reusable spacecraft subsystems on the ground. Deep
space experiments and spacecraft can self tune when required and adapt to changes in system dynamics
that would otherwise degrade the performance of actuator controls. Adaptive control has the capability
to accommodate limited system faults which do not prevent actuator motion and to provide fault detec-
tion. Limited faults, such as an increase in friction, can be accommodated without failure through
adaptation of controller gains. Hard failures, such as a break in mechanical linkage, cannot be
accommodated. The system will fail, but changes in the dynamics can be detected and reported
to a higher level controller. Future work will include the refinement of the adaptive control approaches
to allow deployment of these, or similar adaptive controllers, at the actuator level in spacecraft.
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